A1

LAND SOUTH OF HENLEY ROAD EYE AND DUNSDEN OXFORDSHIRE

Agricultural Land Classification ALC Map and Report

November 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 3303/142/97 FRCA Reference EL 33/1793 1

AGRICULTURAL LAND CLASSIFICATION REPORT

LAND SOUTH OF HENLEY ROAD EYE AND DUNSDEN OXFORDSHIRE PROPOSED WATER PARK

INTRODUCTION

1 This summary report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 275 6 ha of land bounded by the Henley Road Playhatch Road and the River Thames between Caversham and Sonning Eye in Oxfordshire close to the border with Berkshire The survey was carried out during November 1997

The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) in connection with the proposal for the South Oxfordshire Water Park The site is adjacent to a detailed survey carried out by FRCA (formerly Statutory ADAS) in 1992 (FRCA Ref 3303/052/92) The current survey excludes approximately 10 ha of agricultural land within the application area which was assessed in 1992 as Grade 2 and Subgrade 3b The section of the 1992 assessment between Berry Brook and Henley Road adjacent to the current survey is now being worked for gravel Therefore although the land quality assessment is different on each side of the track (Grade 2 against Subgrade 3a) unfortunately the surveys cannot be reconciled

3 The work was conducted by members of the Resource Planning Team in the Eastern Region of the FRCA The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

The majority of the site is mapped as Other land which includes gravel workings and a factory producing construction materials flooded gravel pits a marina a sailing club some woodland dwellings farm buildings and tracks. The agricultural land is confined to the fringes of the survey area and at the time of survey land use comprised permanent grazing and arable fields either sown with winter cereals or remaining in stubble from the 1997 season. The grassland was being used to graze cattle

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

7 The fieldwork was conducted at an average density of slightly more than 1 boring per hectare of agricultural land Fifty nine borings and four soil pits were described

¹ FRCA is an executive agency of MAFF and the Welsh Office

Grade/Other land	Area (hectares)	/ surveyed area	/ site area				
2 3a 3b Other land	1 I 22 7 24 6 227 2	2 3 46 9 50 8	0 4 8 2 9 0 82 4				
Total surveyed area Total site area	48 4 275 6	100	17 6 100				

Table 1 Area of grades and other land

8 The agricultural land on this site has been classified in the range Grade 2 (very good quality) to Subgrade 3b (moderate quality) with substantial areas of Subgrade 3a (good quality) Principal limitations to land quality include soil wetness and soil droughtiness

9 A small area of Grade 2 land has been mapped towards the north east The soils in this area comprise well drained medium loams Given the local climatic parameters this land is slightly restricted on the basis of soil droughtiness as in drier years crop yield may be slightly compromised by a lack of available water

10 Approximately half of the agricultural land at this site has been mapped as Subgrade 3a Land in these areas is principally limited by soil droughtiness although at some locations soil wetness is dominant. The majority of the observations comprise a loamy topsoil and upper subsoil overlying a very stony loamy lower subsoil. The local climate dictates that soils of this type are likely to have inadequate available water especially during the summer. As a result crop yields are likely to be adversely affected. Within the Subgrade 3a mapping units some land principally towards the east of the site is limited by soil wetness. The soils observed comprise medium loamy topsoils overlying loamy and clayey subsoils. The clayey subsoil horizons impede soil drainage and occur at moderate depths in the profile. The depth influences the severity of the soil wetness problem and in combination with topsoil texture determines the ALC grade. Soil wetness reduces the versatility of the land in terms of access by machinery (e.g. for cultivations or harvesting) and for grazing by stock if damage to the soil is to be avoided. It also has the effect of reducing the level and consistency of yields

11 The remaining agricultural land has been classified as Subgrade 3b The principal limitation in these areas is soil wetness. Soils are heavy and comprise a loamy or clayey topsoil overlying clayey subsoils. The clayey subsoils impede drainage and occur at a shallow depth. Flexibility of agricultural use in terms of cropping and stocking is reduced and yield levels and consistency are also likely to be less predictable than on the land shown as Subgrade 3a.

FACTORS INFLUENCING ALC GRADE

Climate

12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

13 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values					
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit Wheat Moisture Deficit Potatoes	N/A m AOD day C (Jan June) mm days mm mm	SU 750 758 36 1481 667 141 116 111	SU 733 754 40 1476 673 142 115 110				
Overall climatic grade	N/A	Grade 1	Grade 1				

Table 2 Climatic and altitude data

14 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

15 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

16 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are also not believed to affect the site it is climatically Grade 1

Site

17 The site lies between approximately 35 and 40m AOD The majority of the site is relatively flat The land rises gently along the north western boundary towards the Henley Road Slopes across the site are gentle and do not affect agricultural land quality The River Thames at the southern and eastern boundary is effectively managed and therefore flooding is not significant in terms of agricultural land quality Other site factors such as microrelief are also not significant

Geology and soils

18 The published geological information (BGS 1971) shows the majority of the site to be underlain by loam and alluvial drift deposits Land towards the south west of this area which is mapped as valley gravel has been worked for the gravel

19 The most detailed published soils information for the site (SSEW 1967 SSGB 1968) shows it to comprise a combination of the Purley Thames and Usher soil series Purley soils cover the majority of the agricultural area at the site They are described as well drained brown earths in fine textured loamy drift over calcareous river gravel (SSGB 1968) Thames

series soils are calcareous groundwater gley soils and are mapped in the poorly drained phase They occur at the river margins towards the south of the site extending towards Sonning Eye in the north east of the site and in a band towards the west near Lowfield Farm. They may be described as clayey overlying calcareous clayey alluvium (SSGB 1968). Usher series soils are mapped at the margin of the River Thames towards the east of the site in a relatively small area. They are described as calcareous brown earths with gleying which are developed in very calcareous stoneless loamy alluvium which overlie either grey clay or calcareous gravel (SSGB 1968). Soils of all these broad types were encountered during the survey

AGRICULTURAL LAND CLASSIFICATION

20 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

21 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

Land of very good quality has been mapped in a small unit towards the north of the site The principal limitation is soil droughtiness

23 There is one soil type in this area The profiles observed comprise a slightly stony calcareous medium clay loam topsoil overlying slightly chalky calcareous heavy and/or sandy clay loam subsoils to depth The profiles are well drained (Wetness Class I) with no observed evidence of soil wetness The interaction of the local climate with these profiles means that they are slightly restricted in terms of soil droughtiness is crop yields may be slightly adversely affected especially in dry years However this land is still very versatile and most crop types could be grown successfully with only minor effects on the level and consistency of yields

Subgrade 3a

Land of good quality has been mapped in three separate units towards the north west north east and south of the site The principal limitation to land quality in these areas is soil droughtiness with soil wetness dominating occasionally The soils are characterised by the pit observations 2P and 4P (see Appendix II)

Two soil types were described during the survey The most common comprises a medium clay loam topsoil overlying heavy clay loam subsoils which become more stony with depth. Stone contents in the topsoil and upper subsoil (to between 50 and 60cm) were commonly up to 10% flints by volume. The lower subsoils were commonly impenetrable to the soil auger from this depth. In the pit observation 2P (see Appendix II) the stone content was measured at 49% flints by volume at 65cm in the lower subsoil. In addition the profile was calcareous in many cases and up to 5% chalk fragments occur in addition to the flints further reducing the potential crop available water. Gleying within the profile was also observed commonly within 40cm. This in the absence of a slowly permeable horizon is suggestive of a fluctuating watertable. Given these soil characteristics Wetness Class II best describes the drainage status. However, soil droughtiness is the overriding limitation.

stony subsoils restrict the moisture content of the profiles and moisture balance calculations indicate that the amount of water available to a growing crop may be insufficient for its needs throughout the growing season The resulting drought stress may adversely affect the level and consistency of yields

The second soil type observed represented by Pit 4 (see Appendix II) is principally limited by soil wetness The profiles comprise a medium to heavy clay loam sandy clay loam or occasionally medium silty clay loam topsoil overlying similar upper subsoils. These pass to slowly permeable clay or silty clay lower subsoils from between 45 and 70cm. The evidence of soil wetness in the profiles ie the depths to gleyed and slowly permeable layers are such that Wetness Class III is applied given the moderate local climate. Soil pit 4 (see Appendix II) is generally representative of these soils except that the profile was found to be calcareous and as such it is of slightly better (Grade 2) quality. Calcareous profiles were described sporadically throughout the mapping units. However, the location of this land close to water the range of topsoil textures and the local climatic parameters lead these areas to be assessed as being of Subgrade 3a quality overall. Soil wetness restricts the versatility of the land by limiting cultivation and/or grazing opportunities without damaging the soil. It is also likely to adversely affect plant growth and therefore the level and consistency of yields may be reduced.

27 Occasional observations of both slightly better and slightly worse quality were recorded in the Subgrade 3a map units during the survey However they were of too scattered a distribution to be mapped separately

Subgrade 3b

Land of moderate quality has been mapped in four discrete units the majority of which are separated by water filled gravel workings The principal limitation in these areas is soil wetness with soil droughtiness dominating on occasions The soils are characterised by the pit observations 1P and 3P (see Appendix II)

29 The soils across the majority of this area are of a single type They comprise a medium/heavy clay loam or clay topsoil overlying poorly structured gleyed and slowly permeable clay at shallow (20 40cm) depths The profiles are mostly very slightly or slightly stony and occasionally chalky containing up to 10% flints and/or chalk fragments by volume Evidence of soil wetness is recorded in all the profiles either in or immediately below the topsoil in the form of gleying and manganese concretions From the pit observation 3P (see Appendix II) the clay horizons were found to be poorly structured and slowly permeable Given the moderate local climate with this soil drainage status Wetness Class IV is appropriate which in combination with the topsoil textures results in a Subgrade 3b classification The effects of soil wetness are described in para 26 above. Subgrade 3b land is less versatile than that classified as Subgrade 3a because the limitations are more severe is access restrictions are greater and crop yields are more likely to be adversely affected.

30 The remaining Subgrade 3b land is that mapped to the south of Lowfield Farm This area is principally limited by a combination of soil wetness soil droughtiness and compaction probably caused during the gravel workings The soil profiles were similar to those described in the Subgrade 3a mapping unit (para 25) is slightly stony (8% flints by volume) medium clay loam topsoils overlying increasingly stony (15 32% flints by volume) heavy clay loam subsoils But profiles in this area became impenetrable to the auger and spade at 60 75cm due to an increase in the stone content The major differences were the presence of many manganese nodules in the upper subsoil and the structural condition of this horizon The manganese nodules suggest that groundwater often lies at this depth (30 60cm) and as such Wetness Class IV may be appropriate The upper subsoil (30 60cm) at the representative soil pit 1P (see Appendix II) was considered to be compacted as the peds were very firm in consistence and platy in structure additionally there was no visible porosity. As such this horizon is slowly permeable. Other similar soils on the site (see para 25) did not contain slowly permeable horizons. It is therefore considered that the continual passage of heavy machinery during gravel extraction from the adjacent land has led to the formation of the slowly permeable layer between 30 and 60cm As a result these soils are now classified as Wetness Class IV where Wetness Class II may have previously been appropriate This leads to Subgrade 3b being applied given the interaction between the local climate the restricted water movement in the profile and the medium topsoil textures encountered In addition the combination of soil textures stone content and poor subsoil structural conditions leads to Subgrade 3b also being appropriate on the basis of soil droughtiness in the local climate The effects of soil droughtiness are described above (see para 25) In this area the effects are likely to be more severe and crop yields are likely to be further reduced

31 Occasional observations of both slightly better and slightly worse quality were recorded in the Subgrade 3b map units during the survey However they were of too scattered a distribution to be mapped separately

> Matthew Larkın Resource Plannıng Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet 268 Reading Drift Edition 1 63360 scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1989) Climatological Data for Agricultural I and Classification Met Office Bracknell

Soil Survey of England and Wales (1967) Sheet 268 Reading 1 63360 Scale SSEW Harpenden

Soil Survey of Great Britain (1968) Soils of the Reading District Memoirs of the Soil Survey of Great Britain England & Wales Sheet 268 SSGB Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent	LEY	Ley grass	RGR	Rough grazing
	pasture				
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous	BOG	Bog or marsh	SAS	Set Aside
	woodland				
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				-

Soil Pits and Auger Borings

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66 % fine sand and less than 33 % coarse sand)
- C Coarse (more than 33 / of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35 % clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40 / +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	Igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR frable	EM extremely firm	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations
 - APW available water capacity (in mm) adjusted for wheat
 - APP available water capacity (in mm) adjusted for potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

pogam ALCO12

SAMF	LE	ASPECT				WETH	NESS	WHE	AT	PO	тs	м	I REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	EXP	DIST	LIMIT		COMMENTS
89	SU74977610					1	1	153	37	114	3	2				DR	2	
9	SU75047603					1	1	149		110	1	2				DR	2	
20	SU75007590					2	2	57	59	57	54	4			Ŷ	DR	4	IMPCH 20 QROOT
21	\$U75007586			25		4	38		0		0					WE	3B	
25	SU74937580	STB		20	20	4	38	76	40	78	33	38				WE	3B	IMP FLINTS 55
	01175007500	670		25	25		20		•		0						20	655 D2
**	SU75007580			25	25	4 1	3B	101	0	112	0	3A				WE DR	38 2	SEE P3 IMP69 DR2 120
27	SU75147579 SU75207580			57 50		1	1 1	101 91	25	112 97	1 14	38 38				DR	-	IMP60 DR3A 120
28 36	SU75017574			22	22	4	' 3B	31	25	37	0	30				WE	38	THPOD DR3A 120
	SU75107570			67	67	2	2	133		115	4	2				WD	2	
37	3075107570	510		0,	0,	L	L	155	.,	115	•	2				10	2	
38	SU73607560	PGR		26		2	2	63	53	63	48	4				DR	3A	IMP40 DR3A 120
_ 48	SU75137562			70	70	2	- 3A		0		0					WE	3A	
49	SU73407550					1	1	74	42	74	37	38				DR	3A	IMP50 DR3A 120
5 0	SU73507550			27		2	2	62	54	62	49	4				DR	3A	IMP40 DR3A 120
51	SU73607550			25		2	3A	48	68	48	63	4				DR	3A	IMP30 DR3A 120
52	SU73707550	PGR		35	35	4	3B		0		0					WE	3B	
65	SU75127554	FLW		60	60	2	3A		0		0					WE	3A	
66	SU73307540	PGR		22	50	3	2	103	13	111	0	3A				WD	2	IMP75 DR2 120
67	SU73407540	RGR		22	22	4	3B		0		0					WE	3B	
68	SU73527540	PGR		27	27	4	3B		0		0					WE	3B	
.						-						-					• •	
69 84	SU73607540			26	25	2	2	59	57	59	52	4				DR	3A	IMP40 DR3A 120
	SU73307527			35	35	4	38 2	60	0	60	0	20				WE	3B	TND40 0034 100
85	SU73407530 SU73507530			35 17		2 2	2 2	69 50	47 57	69 59	42 52					DR	3A 3A	IMP40 DR3A 120 IMP40 DR3A 120
87	SU73607530			32		2	2	59 69	47	59 69	42					DR DR	3B	IMP50 DR3B 120
	307,007,030	run		52		2	2	05		05	76	50				DR	50	118 20 0630 120
— 89	SU73807530	PGR		18		2	2	55	61	55	56	4				DR	3B	IMP40 DR3B 120
101	SU75017528			0	35	4	- 38		0		0					WE	3B	
	SU73207520			30		2	2	95	21	103	8	3B				DR		IMP65 SEE P2
104	SU73407520			35		2	2	82	34	85	26	3B				DR	3A	IMP55 DR3A 120
120	SU75007520	PGR		20	35	4	3B		0		0					WE	38	
121	SU73007510			28	28	4	38		0		0					WE	38	IMP FLINT 60
122	SU73107510			26		2	1	90		94	17	3B				DR	2	IMP60 DR2 120
123	SU73207510	ARA		25		2	2	93	23	100	11	3B				DR	3A	IMP65 DR3A 120
	SU73307510			29	55	3	3B		0		0					WE	38	IMP FLINTS 78
1 ¹²⁵	SU73407510	PGR		32		2	2	88	28	93	18	3B				WD	38	IMP 60 SEE P1
	AUR - 60				~~		20		-		-							
1 41	SU74987510			20	20	4	38		0		0	•				WE	3B	0001 05 000
	SU72907496			28		2	2	150		113	2					WD		QSPL 35 Q38
143	SU73007500					1	1	48	68 26		63 16					DR		IMP30 DR3A 120
144	SU73147500 SU73237500					1 1	1	90 83	26	95 87	16 24					DR DR	3A 3A	IMP60 DR3A 120 IMP55 DR3A 120
149 —	3013231300	MR.H				I	,	63	دد	07	24	90				UK	ы	THE JU VADA 120
162	SU74967500	PGR		20	20	4	38		0		0					WE	3B	
	SU72807490			20		2	2	93		99	12	3B				DR		IMP65 DR3A 120

prog am ALCO12

SAMP	LE	ASPECT				WET	VESS	WHI	EAT	PO	TS	м	REL	EROSN	FROST	CHEM	ALC		
NO	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ð	(P DIS	ST LIMI	T	COMMENTS	
172	SU74067489	PGR		25	25	4	3B		0		0					WE	38	QG4 HYDRO	VEG
175	SU74307490	PGR		45	45	3	3A		0		0					WE	3A		
176	SU74407491	PGR		45	45	3	2		0		0					WD	2	SEE P4	-
177	SU75407488	PGR		70	70	2	2	134	18	115	4	2				WD	2		
178	SU74607490	PGR		10	35	4	38		0		0					WE	3B		
179	SU74707490	PGR		0	60	3	2	110	6	112	1	3A				WD	2	IMP85 DR2	120 _
180	SU74807490	PGR		25	65	3	2	139	23	116	5	2				WD	2		
181	SU74907490	PGR		10	20	4	3B		0		0					WE	3B		
191	SU74107480	PGR		28	28	4	38		0		0					WE	38		
192	SU74247480	PGR		20	20	4	38		0		0					WE	38	QG4 HYDRO	VEG
201	SU74007470	PGR		20	20	4	38		0		0					WE	3B		
202	SU74157470	PGR		25	25	4	38		0		0					WE	3B		_
212	SU74057460	PGR		28	28	4	38		0		0					WE	3B		
226	SU73967450	PGR		45	45	3	3A		0		0					WE	3A		
239	SU73877440	PGR		22	22	4	38		0		0					WE	38		-
250	SU73807430	PGR		22	22	4	3B		0		0					WE	38		
261	SU73827423	PGR		45	45	3	3A		0		0					WE	3A		_
P1	SU73407510	PGR		30	30	4	38	88	27	93	17	3B			Ŷ	WD	38	COMPACT 30	0 60 🝙
P2	SU73207520	PGR		24		2	2	91	21	100	7	38				DR	3A	IMP70 DR3/	a 120
P3	SU75007580	STB		24	24	4	3B	89	27	101	10	3B				WE	3B	PIT 55 AU	G 70
P4	SU74407491	RGR		42	42	3	2	130	14	114	3	2				WD	2	PIT 70 AUK	G 120

pogam ALCO11

ρ	ge	1
---	----	---

					MOTTLES		PED		9	STONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY			TOT CONSIST		P SPL CALC	
8	0 33	MCL	10YR42						1	0 HR	5		Ŷ	
	33 65	HCL	10YR44						0	0 CH	5	м	Y	
-	65 120	SCL	10YR54						0	0 CH	3	м	Y	
9	0 26	MCL.	10YR42						1	0 HR	5		Y	
-	26 55	SCL	10YR54						0	0 CH	3	м	Y	
-	55 120	SCL	10YR64						0	0 CH	5	м	Y	
20	0 10	HCL	10YR42 52	10YR5	6 C	D		Ŷ	0		2		Y	
-	10 20	CH	10YR81 64						0	0 HR	2	Р	Y	IMP CHALK 20
											_			
21	0 25	HCL	10YR41						1	• • • • • •	5		Ŷ	37 CHALK
	25 70	С	25Y 51	75YR5	8 M	D		Y	0	0 HR	3		ΥY	3% CHALK
									_		-			
25	0 20	HCL	10YR32 52				FEW MN	Ŷ	0		2	_	Y	
	20 45	C	10YR62	10YR4			FEW MN	Ŷ	0	0	0	P	Ŷ	
	45 55	С	10YR63	10YR4	6 M	DI	few MN	Ŷ	0	0 HR	20	P	Ŷ	IMP FLINTS 55
26	0 25	с	10YR32	10YR5	6 C	c		Y	0	0 HR	2		Y	SEE 03
- 20	25 60	c	25Y 62	75YR5				Ŷ	0	0 116	0	Р	Y Y	SEE P3
•	25 00	C	231 02	10160	0 11	U		•	Ŭ	v	Ŭ	r	, ,	
27	0 27	HCL	10YR42						0	0 HR	5		Y	57 CHALK
	27 57	HCL	10YR54						0	0	0	м	Ŷ	
_	57 69	HCL	25Y 71	75YR5	8 C	D		Ŷ	0	0	0	M	Y	IMP FLINTS 69
28	0 27	HCL	10YR42						0	0 HR	2		Y	
	27 50	С	10YR54						0	0	0	м	Y	
	50 60	С	25Y 71 63	75YR5	8 C	D		Y	0	0 HR	20	м	Y	IMP FLINTS 60
36	0 22	С	10YR42						2	0 HR	5		Y	5% CHALK
	22 60	С	25Y 51	75YR5	8 M	D		Ŷ	0	0 CH	5	Р	ΥY	
37	0 25	HCL.	10YR42						0	0 HR	2		Y	
	25 67	HCL	10YR54						0	0	0	М	Y	
	67 120	HZCL	25Y 63	10YR4	6 C	D		Ŷ	0	0	0	Р	ΥY	
-	0.00		10/044						•	A 115	10			
38	0 26	MCL	10YR44	10004	<i>c c</i>					0 HR	10			
	26 40	HCL	10YR53	10YR4	6 C	υ	com mn	Y	U	0 HR	10	м		IMP FLINTS 40
48	0 25	с	10YR42						0	0 HR	3		Y	
-		c		10YR6	6 F	F (EW MN	Y	0	0	0	м	Y	
	70 120		257 53 63					Ý		о сн	5	M	YY	
	10 120	Č	231 33 03	10110	0 0	0		,	v	0 01	5		1 1	
49	0 25	MCL	10YR43						3	0 HR	10			
	25 45	MSZL	10YR43 53	10YR5	6 C	F				0 HR	20	м		
	45 50	HCL		10YR5						0 HR	30	M		IMP FLINTS 50
50	0 27	MCL	10YR43						0	0 HR	10			
	27 40	С	10YR62	10YR5	6 M	D		Y	0	0 HR	15	M	Ŷ	IMP FLINTS 40

p ogram ALCO11

COMPLETE LIST OF PROFILES 05/01/98 EYE & DUNSDEN WATER PARK

				MOT	TLES		PED		S	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB		CONT		GLEY			TOT CONSIST		IP SPL CALC	
									_					
51	0 25	HCL HCL	10YR43 10YR42	10YR56	с	F		v		0 HR 0 HR	10 10	м		
	25 30	HUL	101842	107830	U	r		Ŷ	U	ОНК	10	m		IMP FLINTS 30
52	0 35	MCL	10YR43						0	0 HR	5		Ŷ	
	35 65	С	10YR61	10YR56	м	D	Few MN	Y	0	O HR	10	ρ	ΥY	
	65 90	С	10YR52	10YR58	М	D	few MN	Y	0	0 HR	10	Р	ΥY	
	90 120	С	10YR51	10YR58	м	D	few mn	Y	0	0 HR	15	Р	ΥY	
65	0 26	с	10YR31 41						0	0 HR	3		Y	27 CHALK
	26 60	с	25Y 53	10YR66	F	F	Few MN		0	0	0	р	ΥY	
	60 120	с	25Y 53	10YR68	С	D	COM MN	Y	0	0 Сн	5	Р	ΥY	
	0.32	M7CI	107041	100046	~	~		v	0	0.01	E		v	
66	022 2250	MZCL MZCL	10YR41 10YR51	10YR46 10YR58	C C		Few MN	Y Y		0 CH 0 CH	5 15	м	Y Y	
	50 75	C	25Y 51 61		M	-		Ŷ		0 CH	3	P	Y Y	IMP FLINTS 75
		Ū	20. 0. 0.					•	·	• • •	·	·		
67	0 22	MZCL	10YR31						0	0 HR	2			
	22 80	С	25Y 61 62	10YR68	М	D		Y	0	0 CH	5	Р	Y	27 FLINTS
	80 120	С	05Y 51	10YR68	м	Ð		Y	0	0 HR	2	Р	Y	
68	0 27	MCL	10YR43						0	0 HR	10			
	27 60	с	10YR62	10YR56	С	D .	MANY MN	Y	0	0 HR	15	P	Y	
	60 80	с	10YR63	10YR56	м	D	MANY MN	Y	0	0 HR	15	P	Y	
69	0 26	SCL	10YR43						0	0 HR	10			
03	26 40	HCL	101R43	107856	с	D		Y	o		15	м		IMP FLINTS 40
	20 .0				Ū	5		•	·	•				
84	0 20	MCL	10YR32						2	0 HR	8			
	20 35	SCL	10YR44						0		25	м		
	35 70	C	25Y 51 61		М			Y	0	0 HR	3	P	Ŷ	
	70 120	с	25Y 61	10YR68	М	D		Y	0	0 HR	10	P	Y	
85	0 35	MCL	10YR42	10YR46	с	D		Y	0	0 HR	5			
	35 40	MCL	10YR52 53		м	D		Y	0	0 HR	5	м		IMP FLINTS 40
00	0.17	10	10/044						•	0.00	10			
86	0 17 17 40	MCL HCL	10YR44 10YR41	10YR56	м	0		Y	0	0 HR 0 HR	10 15	м		IMP FLINTS 40
	17 40		101841	101830	1.1	U		•	v	U HK	.5			
87	0 22	SCL	10YR44	10YR46	С			S	0	0 HR	10			SLIGHTLY GLEYED
	22 32	MSL	10YR44	10YR46	С			S	0	0 HR		M		SLIGHTLY GLEYED
	32 50	С	10YR42	10YR56 6	6 C	D		Y	0	0 HR	25	Р		IMP FLINTS 50
89	0 18	SCL	10YR43						0	0 HR	10			
	18 40	SCL	75YR42	75YR46	С	Ð		Y	0	0 HR	20	м		IMP FLINTS 40
101	0 20	MCL	10YR32	10YR56	с	D		Y	n	0 HR	5		Y	
101	20 35	HZCL	25Y 52	75YR56	c			Ý		0 HR		м	Ý	
	35 80	C	25Y 62	75YR58	M			Ŷ		0 HR	2	P	ΥŸ	

page 2

o og am ALCOll

pge3

				1	MOTTLES		PED		s	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GLEY			TOT CONSIST	STR POR I	MP SPL CALC	
102	0 30	MCL	10YR33 43						0	0 HR	5			SEE P2
	30 60	HCL	10YR54 52		6 C	D	COM MN	Y	0 0	0 HR	5	м		
-	60 65	HCL	10YR54 52			D	COM MN	Ŷ	ŏ	0 HR	30	M		IMP FLINTS 65
					• •	5	0011111	•	, i	•	50			THE PERMIS US
104	0 35	MCL	10YR42	10YR4	6 C	D		Y	0	0 HR	5			
	35 55	MCL	10YR53	10YR5		0		Ŷ	Ō	0 HR	25	м		IMP FLINTS 55
-						-								
120	0 20	MCL	10YR42						0	0 HR	5		Y	
	20 35	HCL	25Y 52	10YR5	6 C	D		Y	0	0 HR	2	м	Y	
	35 50	С	25Y 62	75YR5	B M	D		Y	0	0 HR	2	Ρ	ΥY	
	50 100	С	25Y 71	75YR5	8 M	D	COM MN	Y	0	0 SLS	ST 5	Ρ	ΥY	
121	0 28	HCL	10YR41	10YR4	6 C	D		Y	0	0 HR	2			
	28 60	С	25Y 51	10YR5	в м	D		Y	0	0 HR	5	Р	Y	
122	0 26	MSZL	10YR42						1		5			
	26 50	MCL	10YR53	10YR5		F		Y	0	0 HR	5	M	Ŷ	5% CHALK
	50 60	HCL	10YR52	10YR58	B C	D		Y	0	0 HR	30	M	Ŷ	5% CH IMP 60
- 100	0.05		100042							0 110	~			
123	025 2555	MCL	10YR42	10000	~ ~	-			1	0 HR	8			
	25 55 55 65	MCL HCL	10YR52 53 10YR52 53			F		Y Y	0	0 HR	5	M		
	33 03		101832 33	IVIKO	5 C	r		T	0	0 HR	20	M		IMP FLINTS 65
— 124	0 29	MCL	10YR43						1	O HR	5			
	29 55	MCL	75YR53	75YR46	5 C	F		Y	, O	0 HR	5	м		
-	55 78	С	75YR42	75YR50			COM MN	Ŷ	0	0 HR	15	Р	Y	IMP FLINTS 78
_														
125	0 32	MCL	75YR43	75YR46	5 C	F		Y	0	0 HR	5			SEE P1
	32 60	HCL	10YR52	75YR46	5 M	D	MANY MN	Y	0	0 HR	15	м		IMP FLINTS 60
141	0 20	HÇL	10YR32						0	0 HR	2		Y	
	20 50	С	25Y 62	75YR58		Ð		Ŷ	0	0 HR	2	Р	ΥY	
	50 100	С	25Y 71	75YR58	B C	D		Y	0	0 SLS	ST 5	Р	ΥY	
	0.00		100040	10000					•					
142	0 28	MCL	10YR42	10YR46		Ð			0	0 HR	2			
-	28 35 35 120	MCL HCL	10YR52 53 25Y 51 52			D		Ŷ		0 HR	5	M		
	35 120	NUL	201 01 02	UTKO	8 M	υ		Ŷ	U	OHR	5	м		
143	0 20	MSZL	10YR42						0	0 HR	5			
	20 30	MCL	10YR43							0 HR	30	м		IMP FLINTS 30
•									Ŭ	•				
144	0 30	MCL	10YR41 42						1	0 HR	5			
-	30 60	MCL	10YR54 56							0 HR	10	м		IMP FLINTS 60
145	0 26	MCL	10YR43						1	0 HR	5			
-	26 55	С	75YR44						0	0 HR	10	м		IMP FLINTS 55
-														
162	0 20	MCL	10YR32	5		_			0	0 HR	2	_	Y	
	20 50	C	25Y 62	75YR58				Ŷ	0	0 SLS		P	ŶŶ	
	50 100	L	25Y 71	75YR58	Э М	U		Ŷ	0	0 SLS	5	Р	ΥY	

prog am ALCOll

				ı	MOTTLES	i	PED	STONES		STRUCT/ SUBS						
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY				TOT CONSIST		MP SPL CAL	с	
				- 0.40		_						-				
163	0 20	MCL	10YR33	10YR40		F		Ŷ		01		2				
	20 50	HCL	25Y 61	10YR58		D		Ŷ		0 1		5	M			
	50 65	HCL	25Y 61	10YR58	8 M	D		Y	U	0 1	HK	25	м			IMP FLINTS 65
172	0 25	HCL	25Y 32 42	10YR5	в с	D		Y	0	0	IR	2			Y	
	25 60	С	25Y 61	10YR5		D		Ŷ		0 0		5	Р		Y	
175	0 22	HCL	25Y 42						0	0 }	HR	2			y	
	22 45	С	25Y 53 54						0	0 (СН	5	м		Y	
	45 70	С	25Y 52 61	10YR68	в С	D		Y	0	0 0	СН	5	P	Y	Y	
	• • •								•	• •						
1 76	0 20	MCL	25Y 42	- 0.400		-				0 1		2			Y	SEE P4
	20 45	C		10YR60						0 (5	M		Y	
	45 70	С	25Y 53	10YR5	s c	D		Ŷ	0	0 (ж	5	Р	Ŷ	Y	
177	0 25	HCL	25Y 42						0	0 F	IR	2		•	Y	
	25 70	с	25Y 53 54							0 0		5	м		Y	
	70 120	с	25Y 53	10YR58	в С	D		Ŷ	0	0 0	ж	5	Ρ	Y	Y	
178	0 10	MZCL	10YR32						0	0		0		,	Y	
	10 35	HZCL	25Y 63	10YR56	5 C	D		Y	0	0		0	м	,	Y	
	35 100	С	25Y 62	75YR5	в м	D		Ŷ	0	0		0	Р	Ϋ́	Y	
1 79	0 35	MCL	10YR42	10YR56	5 C	D		Y	n	0 F	1D	5			Y	
175	35 60	HCL		75YR56				Ŷ		0 -		2	м		Y	
	60 75	C	25Y 62	75YR58				Ŷ		01		2	P		Y	
	75 85	c	25Y 62	75YR58		D		Ý		0 1		10	P		Y	
		Ū	201 02			•		•	•	•			•		•	
180	0 25	MCL	10YR42						0	0		0		,	Y	
	25 40	MCL		75YR46	5 C	D		Y	0	0		0	м	,	Y	
	40 65	HCL	25Y 52	75YR56	5 C	D		Y	0	0		0	м	Y	Y	
	65 120	с	25Y 71	75YR58	3 M	D		Y	0	0		0	Р	Y	Y	
	• ••		10.000							<u>.</u> .		•				
181	0 10	MZCL	10YR32			_		v	0	0 1		2			Y	
	10 20	HZCL	25Y 52	75YR56		Ð		Ŷ	0	0 1		2	M		Ŷ	
	20 40 40 100	ZC ZC	25Y 62 25Y 71	75YR58 75YR58		D D		Y Y	0	0 F 0	1K	2 0	P P		Ŷ	
	40 100	20	251 /1	731130	5 0	U		T	0	U		U	P	Ť	Ŷ	
191	0 28	HCL	25Y 32 42						0	0 F	łR	2		,	Y	
	28 40	с	25Y 53	10YR68	5 C	D		Y	0	0 0	ж	5	Ρ	ΎΥ	Y	
	40 70	С	25Y 61	10YR58	3 М	D		Y	0	0 0	ж	5	Ρ	Y	Y	
		-						_,		~						
192	0 20	C	25Y 42	10YR58				Y	0			2	-		Ý	
	20 40	C		10YR58				Ŷ	0			5	P		Y	
	40 70	с	25Y 51	10YR58	3 M	υ		Y	Ų	0 0	,ri	5	P	Y	r	
201	0 20	HCL	10YR32						0	ОН	IR	2		Ň	Ý	
	20 40	C	25Y 52 53	10YR58	з с	F		Y		0 0		5	Р		Y	
	40 70	c	25Y 62 61					Ŷ		0 0		5	P	Y Y		

page 4

prog am ALCOll

				1	MOTTLES	5	PED		5	STO	NES	5	STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR			CONT		GLEY	2 6	5 L.	ITH	тот (CONSIST	STR PC	R IMP	SPL CA	LC	
-																		
202	0 25	HCL	25Y 32 42						0	0	HR	2					Y	
	25 50	С	25Y 52 53	10YR5	8 C	D		Y	0		СН	5		Р		Y	Y	
	50 70	С	25Y 61	10YR5	8 M	D		Y	0	0	СН	5		Р		Y	Y	
												~						
212	0 28	HCL	25Y 32 42			D		Ŷ	0		HR	2					Y	
	28 45	C	25Y 52	10YR5		D		Y	0		СН	5		P P		Ŷ	Y	
•	45 70	с	25Y 61	10YR5	6 M	D		Y	0	U	СН	5		٢		Ŷ	Y	
226	0 22	HCL	10YR32						0	0	HR	2					Y	
- 220	22 35	HCL	25Y 54						0 0		СН	5		м			Ý	
	35 45	C	25Y 53	10YR6	6 F	F			ŭ		СН	10		M			Ŷ	
	45 80	c	25Y 53	10YR6		D		Y	ō		СН	10		P		Ŷ	Ŷ	
-		•			• •	•		,	•	•	•							
239	0 22	MCL	10YR32						0	0	HR	2					Y	
	22 50	с	25Y 52 53	10YR5	в С	D		Y	0	0	СН	2		Р		Y	Y	
-	50 70	С	25Y 61	10YR5	8 M	D		Y	0	0	СН	2		Ρ		Y	Y	
_																		
250	0 22	MCL	10YR32						0	0	HR	2					Y	
•	22 60	С	25Y 51 52	10YR6	B M	D		Y	0	0	CH	2		P		Y	Y	
										_		_						
261	0 20	HCL	10YR32			-			0		HR	2					Ŷ	
	20 45	C	25Y 53	10YR6		F			0		CH	2		M			Y	
	45 80	с	25Y 53	10YR6	8 C	F		Y	0	U	СН	2		Р		Ŷ	Y	
Р1	0 30	MCL	75YR42	75YR4	6 C	F		Y	3	1	HR	8					N	AT BOR 125 COM MN
	30 60	HCL	25Y 53	10YR5			25YR53	Ŷ	0		HR	15	MDCPL	FM P	Y	Ŷ	N	COMPCT MANYMN SVD
	60 75	HCL	25Y 52	10YR5			25YR53	Y	0		HR	32		FM M	N	N	N	IMP FLINTS 75 SVD
P2	0 24	MCL	10YR52	10YR5	6 C	D	Few MN	Y	1	0	HR	4					N	AT BOR 102
	24 61	HCL	10YR53	10YR5	6 C	D	FEW MN	Y	0	0	HR	7	MDCSAB	FRM	N	N	Ν	SVD SIEVED
9	61 70	HCL	10YR62	10YR5	6 M	D	few MN	Y	0	0	HR	49		м	N		Ν	IMP FLINTS 70 SVD
— рз	0 24	HCL	10YR32	10YR5		D		Y		0		2		_			Y	AT BOR 26
	24 46	C	25Y 62	75YR4		D		Y	0		HR		MASSIV		Y		Y	
	46 70	С	25Y 61	75YR5	8 M	D		Y	0	0	HR	3	WKCAB	гM	Y	Y		
	0 20	MCI	10YR32						0	0		0					v	AT DOD 174
P4	20 29	MCL HCL	104R32						0	0		0	MDVCAB	FD M			Y V	AT BOR 176
	20 29 29 29	C	10YR52	10YR54	6 5	F			0	0		0	MDVCAB				Υ Υ	
-	42 100		25Y 62	75YR5			COM MN	Y	0	-	HR	5	MDCAB		Y	Y	Y Y	
_	100 120		257 62 257 62	75YR5			05Y 61	Y	0		HR	40	TIDUAD	Р	,	T	Y	
	100 120	.	231 92	10110		0		Ţ	U	v	ПК	40		r			T	

pge5